
.... }

Forth Report
Editor: Paul Frengel; P.O. Box 820506, Houston, TX 77282; pfrenger@ix.netcom.com

Parallel Forth
Paul Frenger

1 Introduction: Cranking Up the
Old Central Processor

The majority of digital computers used on this planet run
their programs sequentially. That is, they fetch an in-
struction from memory, decode it, then execute the op-
erations embodied in the nstruction. This simple cycle is
repeated on and on until the omputer is halted. This kind
of computer is sometimes described as a Von Neuman
machine, after John Louis von Neumann (1903-1957), a
mathematician and promoter of the stored computer pro-
gram concept [1]. It 's a great design, robust and effec-
tive. However, its sequential architecture acts a lot like
the escapement mechanism in a clock, holding back cen-
tral processor speed in a tick-tock gait. This has been
referred to as the 'Von Neuman bottleneck' [2]. Since
people usually don't like to wait, engineers and computer
scientists have improved, enhanced and honed this lit-
tle sequential computing machine continuously over the
years using a variety of techniques. One stratagem has
been to raise the CPU clock speed; we started with a 4.77
MHz Intel 8088 in the IBM PC in 1983, and now we are
enjoying 450 MHz Pentium IIs, with faster chips on the
near horizon. Raising CPU speed is a non-trivial task,
however, since extensive changes to chip geometry, tran-
sistor technology, semiconductor fabrication methods and
power management have had to be made. Some of these
CPU chips work near the limits of heat tolerance; occa-
sionally one oversteps these bounds in a smoky, sparking
display. Even printed circuit board fabrication technology
has had difficulty keeping up with these super-fast CPUs.

Another CPU performance-enhancing stratagem has
been widening of on-chip buses and word widths. Our
1983 PC used an 8-bit CPU, quickly going to 16-bits, then
32 and 64-bits. These new wide-bus chips can take in and
spit out more bytes of information from memory (as in-
structions or data) in a single cycle. Unfortunately, wider
buses commit more of the chip's internal silicon acreage
to signal conduction rather than to computational units.

Other stratagems have been used to further enhance

the modern central processor's speed and general perfor-
mance: pipelining technology, provision for large on-chip
caches, scoreboarding, out-of-order instruction execu-
tion, math coprocessors, having multiple execution units
and so on. Technologies not-yet implemented (such as
three-dimensional architectures) are waiting in the wings.
But ultimately, the bottlenecks in Von Neuman's ma-
chine must assert their performance limitations, just as
the speed of light in a vacuum affects space travel (the
'Star Trek' legend notwithstanding).

Can we circumvent this execution speed problem
somehow?

2 Introducing Parallelism,
Some Forth

With

When cheap or simple is the criterion, one of something
usually suffices. For example, years ago Motorola sold
a single-bit CMOS CPU, the MC14500B, which they
called the 'Bit Fiddler' [3]. Hardly more than an ALU,
this 1 MHz 16-pin IC had no address bus, recognized
sixteen 4-bit opcodes (two of which were no-ops!) and
performed arithmetic and boolean functions on one data
bit at a time. You configured a MC14500B system by
connecting a free-running up-counter to the address lines
of a 4-bit wide program EPROM, and the four EPROM
data lines fed the CPU its instructions. When the counter
was reset to zero the first instruction was fetched from
the EPROM, then executed by the MC14500B. Each in-
struction in turn was fetched as the counters incremented.
When the counters overflowed to zero again, the program
restarted. If you were clever with CMOS 4000-series
and 74C-series 'glue chips', you could create quite com-
plex and sophisticated systems with it. Motorola intended
the part to be a super-simple processor for such applica-
tions as traffic light sequencers, but single-chip micro-
controllers were a heckuva lot easier to use, and one of
today's Microchip Technologies' PIC 12C-series 8-pin 8-
bit OTP controllers would run rings around it. So, no, I 'm

28

i

Forth
not surprised you never heard of the MC14500B.

While on the subject of single-bits and CPUs, Motorola
also created a cheap version of its 8-bit 6800 processor ar-
chitecture, the 6804, which (if I heard this right) used a
single-bit internal serial bus to move data bytes around
on the chip. This serial approach was about eight times
slower than using traditional 8-bit parallel data paths, but
did meet the criterion of saving expensive silicon for tran-
sistors since it required only one signal conductor in-
ternally. But with silicon geometries now shrinking to
nearly nothing and microcontrollers hitting 49 cents in
quantity (as a recent Zilog ad bragged), there is no justi-
fication for a slow cheap chip when fast cheap chips are
available.

I had a teacher in school who used to justify group
homework assignments by saying "many hands make
light work". Well they do, but the resulting interpersonal
confusion can be a killer. In our discussion today, I 'm
going to present a few examples of this 'many hands' ap-
proach for your amusement and edification.

A good example of parallelism was shown to the atten-
dees of the 1991 SIGForth Conference in San Antonio,
Texas [4]. This Dr Howerton had a student in his pro-
gramming languages class, a Joseph Gradecki, who built
a parallel computer using sixteen Intel 8031 8-bit micro-
controllers arranged in a hypercube. Each 8031 'node'
contained a home-grown Forth interpreter; each com-
municated serially with its nearest neighbor nodes and
with a master CPU which controlled the entire hypercube.
Joseph created a simple parallel-OS based on Forth. He
demonstrated this device by calculating Mandelbrot sets,
performing parallel text searches and pipelined computa-
tion of polynomials. With an 8031 internal clock speed of
3 MHz, the 'cube' achieved 192 MIPS and between 4 and
8 megaFLOPS. This is excellent performance, especially
for such dinky little 8-bit controllers, ten years ago! And
again, using today's mierocontrollers (like the Scenix 50
MHz version of the Microchip Technology PIC 16C5x),
you could build a big, fast Forth hypercube on a single
Eurocard board.

Heck, even I got into this act, and at that same ACM
SIGForth Conference mentioned above [5]. I designed
a multi-layer neural network system using New Micros'
NMIS-0021 Forth-based Motorola 68HC11 single board
computers [6]. I created an 'A-neuron' and a 'B-neuron'
(which differed only in whether the Forth software used
the 68HC1 l 's analog or digital I/O) on each 2-inch by
4-inch CPU board. Each board simulated 8 hybrid neu-
rons, which were directly connected vertically and hori-
zontally to other neurons in the various layers. The sim-

plest 3-layer 8-neuron neural network consisted of two
New Micros' boards, connected together to form a 4-inch
square, one-half-inch tall. Networks containing more lay-
ers and/or more neurons could be assembled using more
boards, all controlled by the Forth language. Obviously,
this is a different kind of parallelism than that mentioned
above (artificial analog neural network vs. digital hyper-
cube), but I think this example illustrates the principle
okay.

Next we're going to jump past 8-bit processor power,
bursting into the realm of 16-bit to 32-bit node networks
and well beyond.

3 More Parallelism, More Forth

In the early 1980's, now-gone INMOS created their
first Transputer CPU, the T-212 [3]. It was a 16-bit
stack/accumulator design with a RISC-like 'minimized'
instruction set. What made the Transputer ideal for paral-
lel processing networks was its built-in hardware support-
ing fast CPU-to-CPU communications. Each Transputer
chip had four high-speed serial data links with on-chip
RAM buffers and DMA processing, so that interproces-
sor communications would take place in a background
mode, not requiring constant CPU supervision.

INMOS developed the Transputer through 32-bit ver-
sions (T-414 and T-800) and a 64-bit bus version (the T-
9000). The T-800 had an internal 64-bit floating point
ALU, somewhat reminiscent of the Intel 486. The T-
9000 also added a 50 MHz clock, much faster process-
ing speed, a 16 kbyte cache, more hardware communica-
tions support and a 5-stage instruction pipeline. Instruc-
tions were bytecoded (4-bits for commands and 4-bits for
data or workspace offsets), so a single 64-bit memory ac-
cess could pick up eight opcodes at a time which the CPU
could execute in parallel. This particular Transputer was
ideal for parallel systems known as 'systolic arrays'. The
T-9000, combined with C104 crossbar switches, could
be used in networks containing hundreds of thousands of
processors. That would be a BIG network!

The operating system INMOS supplied for the Trans-
puter was called 'occam' [7], written by David May [8]
and named after the English philosopher William of Oc-
cam (1300-1349). Occam was designed to easily describe
concurrent processes which communicate via one-way
channels. The 'process' is the essential operation in oc-
cam, with four subtypes: 'assignment', 'input', 'output'
and 'wait'. These subtypes could be used to construct

29

more complex processes for sequential or parallel execu-
tion, which could use inputs from other CPUs. Condi-
tional execution was supported. A revised version, 'oc-
cam2', added floating-point math and data typing [9].

Well, having such a powerful stack-oriented CPU at
hand, how long do you think Forth enthusiasts and Forth
language suppliers could resist writing a suitable Forth
for the Transputer? Answer: not very long at all. One
Transputer enthusiast [10] has listed a number of pro-
gramming languages which have been implemented on
Transputer networks; several Forths are included, some
of which are mentioned below.

The first is 'Inmos Transputer Forth', which is found in
the parallel computing archive at the University of Kent
in England [11]. The listings given cover Forths from the
16-bit T-212 to the 32-bit T-800 Transputers. The nec-
essary hardware is described, Forth images and a loader
is provided, and instructions on rebuilding the Forths for
other configurations are given.

Next is a Forth-79 for the Transputer. Noel Henson
[12], a former team leader at Cogent Research, designed
a desktop computer using 32 INMOS T-414 and T-800
processors. He reported in a posting to comp.lang.forth
on May 4, 1998 that the only quick way to debug the
hardware was to use Forth. Consequently he and his
team wrote a Forth-79 for this hardware, which exe-
cuted quickly on the Transputer and which could repli-
cate itself from node to node. The program files archived
in 'rom.zip' can be downloaded through links at Mr.
Meenakshisundaram's website.

Next is 'Turbo-Forth 83' for the 32-bit TS0x Trans-
puters. The program files archived in 'f-tp-100.zip' can
be downloaded through the above website links. Finally
there is 'tForth Parallel Forth vl .0 ' by The Dutch Forth

Workshop, accessible via the above website or directly
[13]. This transputer Forth contains an integrated opti-
mizer and an assembler; it runs about half as fast as hand-
optimized assembler but much faster than Transputer C
code. It is ANS-compliant. The I/O of tForth is handled
with a server written in the C language and is currently
available for MS-DOS and UNIX machines.

The above Transputer Forths may be satisfactory for
general use, but I have not had any personal experience
with them. My sainted grandmother always used to say,
"If you don't know diamonds, know your jeweler". To
stretch a metaphor a bit, let me rephrase that wisdom: "If
you don't know Forth, know your Forth source". One
Forth vendor I know quite well who offers Transputer
Forth is MicroProcessor Engineering Ltd of Southamp-

ton, England. They sell a PC-based or Unix-based Forth
cross-compiler for the T2xx, T4xx and T8xx CPUs [14].

The above list is undoubtedly incomplete. Be sure to
check the relevant newsgroups [15-17], the Internet Paral-
lel Computing Archive [11], the Oxford University Trans-
puter Archive [18] and try keyword searches with your
favorite search engines. By the way, the Transputer was
picked up commercially from INMOS by STMicroelec-
tronics (formerly SGS-Thomson) [19]. Please contact
them for pricing and availability.

Finally in this section, let me mention the use of Forth
with the legendary Massively Parallel Processor (MPP)
developed by Dr. John Dorband, NASA/Goddard Space
Flight Center in the mid-1980's [20]. The MPP con-
sisted of 16,000 individual single-instruction multiple-
data (SIMD) processors, arranged in clusters. Each of
these was fed by its own instruction stream. Communi-
cation between clusters of processors was accomplished
both explicitly and implicitly. The MPP was used for im-
age enhancement from spacecraft and the Hubble Tele-
scope, complex graphics operations, simulation of cellu-
lar automata, finite element analysis and solution of other
amazingly complex problems. It is unlikely that you or I
will ever get our hands on such a vast parallel computer,
but if I did I would use it to analyze DNA structure, pro-
tein synthesis and enzyme binding site dynamics. What
would you use it for?

Dorband has worked on a number of other parallel
computers. He has been a member of the ANS Forth
Standards Committee, which proves that he knows a good
thing when he sees it.

4 Latest Parallel Forth Develop-
ments

Some of the preceeding information pertains to the use
of Forth on ancient or unobtainable hardware. Now let's
look at current events with Jeff Fox, a long-time Forth
enthusiast, hardware/software designer and parallel com-
puting wizard [21]. Jeff has worked with Forth creator
Chuck Moore for a decade, including several Forth-in-
silicon projects.

Fox has looked long and hard at marrying Forth with
LINDA, which is not a programming language but a
way of extending conventional languages into the paral-
lel processing arena (ie: FORTRAN-LINDA, C-LINDA,
FORTH-LINDA) [22]. The LINDA paradigm is based
on active and passive 'tuples'. A tuple is a sequence of

30

:

r r

typed fields each of which have (or can have) a value. Tu-
ples exist in 'tuple space', which is a global, associative,
object memory. It can be implemented on multiproces-
sor systems or computer networks. An active tuple sup-
ports processes which are executing; passive tuples ex-
change information (like 'Post-It ' notes). Active tuples
can spawn simultaneous 'child' processes in other tuples
as needed to perform calculations in parallel; passive tu-
ples synchronize these processes and move data around.

In FORTH-LINDA, the master processor manages the
network, breaks up large problems into smaller parts and
manages the active 'worker tuples' which perform the
necessary calculations in parallel. When a worker tuple
finishes its current task, it is recycled and reassigned to a
new task. The number of available processors in the net-
work is irrelevant: the more CPUs which are available to
run active tuples, the faster the problem can be solved.

The master processor loads a copy of Forth into each
available processor. At the lowest level, these Forth
processors execute Forth code pretty much in a nor-
mal fashion, with the usual stack operations being local
to the processor. At a higher level, LINDA extension
words to Forth can be executed by these same proces-
sors, reading or writing data and/or messages in passive
tuples. FORTH-LINDA has inherent load balancing. The
Montvetishsky paper describes all this in great detail and
it is beautiful to read and understand.

Obviously, any networked computer system which
could run Forth could support FORTH-LINDA, from that
little 8031-based hypercube, to the Transputers, to the
MPP. But Jeff Fox has a cute little CPU for us which
further enhances the beauty of this approach: a Forth en-
gine known as the 'F21' [23]. The F21 is a stand-alone
20-bit Forth processor which can be networked in rings,
grids, multidimensional arrays or other network topolo-
gies as needed to support various types of problems. As
a stand-alone CPU it contains analog A/D-D/A, paral-
lel ports, a realtime clock, a video coprocessor for gen-
erating TV-type synchronized NTSC or RGB color dis-
plays, a memory controller (SRAM/DRAM/ROM) and
high-speed DMA-supervised serial I/O for networking. A
CPU cycle is 20 nsec.

Why is the F21 a 20-bit processor? Essentially, be-
cause this is all it needs. Each of the CPU's 27 in-
structions is 5-bits long, allowing four instructions to be
fetched per memory cycle and executed simultaneously.
A maximum sustained rate of 200 MIPS executing out of
SRAM can be achieved in this fashion (ROM is faster,
DRAM slower). Jeff Fox offers a free F21 software sim-
ulator and emulator which you can download from his

website. The F21 chip is now up to revision 'd' and is
packaged in a 68-pin PLCC. Please contact Jeff at Ultra
Technology for pricing and availability.

Fox and Montvelishsky worked together on 'F*F',
their Forth-distilled version of LINDA for the F21. The
original FORTH-LINDA implementation required five
Forth words to accomplish this; the new F*F requires
only two, capitalizing on the built-in communications
hardware support of the F21 when used in networks.
The passive tuple model has been removed from LINDA,
vastly simplifying data communications and message-
passing between active processes. Any F21 can send data
to a single node, groups of nodes or to the entire network;
the Forth word 'G! ' stores data to these global data st~c-
tures. Reading global variables or data structures work
like local memory fetches and are quite fast. The Forth
word 'RX' sets up a Forth word execution stream for
transmission to and running on other nodes. This F*F
software could be run on other hardware if you'd like to
homebrew a few boards with your favorite CPU and some
glue logic; however, the F21 seems to be the ideal setup
for F'F, especially since its instruction set is truly made
for Forth.

5 Conclusion

This long-winded odyssey has gone backward and for-
ward in time, looked at serial and parallel CPUs, singly
and by the hundreds of thousands, and hardware and soft-
ware considerations for parallel processing. The good
news is: by now, your understanding of parallel process-
ing and the role of Forth hardware and software in it is
considerably greater. The bad news is: we have barely
scratched the surface of this topic! I invite you to look
more deeply if you have an interest in this area, or better
still have a proposed application. Contact the people and
resources I have outlined for you. Get involved!

So there you have it: when you speak of parallel com-
puting systems, don't forget to think of Forth.

6 Bibliography

1. http://ei.cs.vt.edu/~history/VonNeumann.html.

2. Howland, John, "Lecture Notes for CSCI
301: Great Ideas in Computer Science", Dept Comp
Sci, Trinity Univ, San Antonio, TX, 1995. http://
www.cs.trinity.edu/About/The_Courses/cs301/12.par-
allel.processing/ 12.parallel.proc.html.

31

i~i~iiii; I / ~ ii ;~i!

3. http://www.glue.umd.edu/~dikmen/CPUs.html.

4. Howerton, Charles, "Forth is alive and well and liv-
ing in a hypercube somewhere in Wyoming", Proc ACM
SIGForth'91 Conf, pg.115-119.

5. Frenger, Paul, "A Forth-Based Hybrid Neuron for
Neural Nets", Proc ACM SIGForth'91 Conf, pg.99-102.

6. http://www.newmicros.com.

7. http://www.realtime-info.be/encyc/techno/terms/
87/64.htm.

8. May, David, "Occam", Sigplan Notices, Vol.18
No.4, 1983, pg.69-79.

9. http://www.realtime-info.be/encyc/techno/terms/
88/64.htm.

10. Meenakshisundaram, Ram, "Transputer Home
Page". http:// www.geocities.com/ SiliconValley/
Heights/1190/languages.htm.

11. http://www.hensa.ac.uk/ftp/pub/parallel/ven-
dors/ inmos/archive-server/forth/.

12. http://www.cowboyz.com.

13. http://www.iaehv.nl/users/mhx/t4faq.html.

14. http://www.mpetest.demon.co.uk/MPE.htm.

t5. comp.parallel.

16. comp.sys.transputer.

17. comp.lang.forth.

t 8. http://www.comlab.ox.ac.uk/archive/transputer/.

19: http://www.st.com.

20. http:// newton.gsfc.nasa.gov/aCe/ aCe_dir/
C_language/references/PForth.html.

21. http://www.ultratechnology.com.

22. Montvelishsky, Michael, "PARALLEL
FORTH: The New Approach", 1993. http://
www.ultratechnology.com/4thpar.html.

23. Fox, Jeff, "F21 and F'F: F21 and Paralliz-
ing Forth", 1993. http:// www.ultratechnology.corn/
form193.html.

Paul Frenger is a medical doctor who has been pro-
fessionally involved with computers since 1976. He has
worked as a computer consultant, published nearly one
hundred articles in the bioengineering and computer lit-
erature, edited the ACM SIGForth Newsletter for four
years and acquired three computer patents along the way.
Paul was bitten by the reverse Polish bug in 1981 and has
used Forth ever since. Being both a physician and a com-
puter programmer, Paul believes that the term 'hacker' is
doubly appropriate in his case.

32

