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1 Introduction: Cranking Up the 
Old Central Processor 

The majority of digital computers used on this planet run 
their programs sequentially. That is, they fetch an in- 
struction from memory, decode it, then execute the op- 
erations embodied in the nstruction. This simple cycle is 
repeated on and on until the omputer is halted. This kind 
of computer is sometimes described as a Von Neuman 
machine, after John Louis von Neumann (1903-1957), a 
mathematician and promoter of the stored computer pro- 
gram concept [1]. It 's a great design, robust and effec- 
tive. However, its sequential architecture acts a lot like 
the escapement mechanism in a clock, holding back cen- 
tral processor speed in a tick-tock gait. This has been 
referred to as the 'Von Neuman bottleneck' [2]. Since 
people usually don't  like to wait, engineers and computer 
scientists have improved, enhanced and honed this lit- 
tle sequential computing machine continuously over the 
years using a variety of techniques. One stratagem has 
been to raise the CPU clock speed; we started with a 4.77 
MHz Intel 8088 in the IBM PC in 1983, and now we are 
enjoying 450 MHz Pentium IIs, with faster chips on the 
near horizon. Raising CPU speed is a non-trivial task, 
however, since extensive changes to chip geometry, tran- 
sistor technology, semiconductor fabrication methods and 
power management have had to be made. Some of these 
CPU chips work near the limits of heat tolerance; occa- 
sionally one oversteps these bounds in a smoky, sparking 
display. Even printed circuit board fabrication technology 
has had difficulty keeping up with these super-fast CPUs. 

Another CPU performance-enhancing stratagem has 
been widening of on-chip buses and word widths. Our 
1983 PC used an 8-bit CPU, quickly going to 16-bits, then 
32 and 64-bits. These new wide-bus chips can take in and 
spit out more bytes of information from memory (as in- 
structions or data) in a single cycle. Unfortunately, wider 
buses commit more of the chip's internal silicon acreage 
to signal conduction rather than to computational units. 

Other stratagems have been used to further enhance 

the modern central processor's speed and general perfor- 
mance: pipelining technology, provision for large on-chip 
caches, scoreboarding, out-of-order instruction execu- 
tion, math coprocessors, having multiple execution units 
and so on. Technologies not-yet implemented (such as 
three-dimensional architectures) are waiting in the wings. 
But ultimately, the bottlenecks in Von Neuman's ma- 
chine must assert their performance limitations, just as 
the speed of light in a vacuum affects space travel (the 
'Star Trek' legend notwithstanding). 

Can we circumvent this execution speed problem 
somehow? 

2 Introducing Parallelism, 
Some Forth 

With 

When cheap or simple is the criterion, one of something 
usually suffices. For example, years ago Motorola sold 
a single-bit CMOS CPU, the MC14500B, which they 
called the 'Bit Fiddler' [3]. Hardly more than an ALU, 
this 1 MHz 16-pin IC had no address bus, recognized 
sixteen 4-bit opcodes (two of which were no-ops!) and 
performed arithmetic and boolean functions on one data 
bit at a time. You configured a MC14500B system by 
connecting a free-running up-counter to the address lines 
of a 4-bit wide program EPROM, and the four EPROM 
data lines fed the CPU its instructions. When the counter 
was reset to zero the first instruction was fetched from 
the EPROM, then executed by the MC14500B. Each in- 
struction in turn was fetched as the counters incremented. 
When the counters overflowed to zero again, the program 
restarted. If you were clever with CMOS 4000-series 
and 74C-series 'glue chips', you could create quite com- 
plex and sophisticated systems with it. Motorola intended 
the part to be a super-simple processor for such applica- 
tions as traffic light sequencers, but single-chip micro- 
controllers were a heckuva lot easier to use, and one of 
today's Microchip Technologies' PIC 12C-series 8-pin 8- 
bit OTP controllers would run rings around it. So, no, I 'm 
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not surprised you never heard of the MC14500B. 

While on the subject of single-bits and CPUs, Motorola 
also created a cheap version of its 8-bit 6800 processor ar- 
chitecture, the 6804, which (if I heard this right) used a 
single-bit internal serial bus to move data bytes around 
on the chip. This serial approach was about eight times 
slower than using traditional 8-bit parallel data paths, but 
did meet the criterion of saving expensive silicon for tran- 
sistors since it required only one signal conductor in- 
ternally. But with silicon geometries now shrinking to 
nearly nothing and microcontrollers hitting 49 cents in 
quantity (as a recent Zilog ad bragged), there is no justi- 
fication for a slow cheap chip when fast cheap chips are 
available. 

I had a teacher in school who used to justify group 
homework assignments by saying "many hands make 
light work". Well they do, but the resulting interpersonal 
confusion can be a killer. In our discussion today, I 'm 
going to present a few examples of this 'many hands' ap- 
proach for your amusement and edification. 

A good example of parallelism was shown to the atten- 
dees of the 1991 SIGForth Conference in San Antonio, 
Texas [4]. This Dr Howerton had a student in his pro- 
gramming languages class, a Joseph Gradecki, who built 
a parallel computer using sixteen Intel 8031 8-bit micro- 
controllers arranged in a hypercube. Each 8031 'node' 
contained a home-grown Forth interpreter; each com- 
municated serially with its nearest neighbor nodes and 
with a master CPU which controlled the entire hypercube. 
Joseph created a simple parallel-OS based on Forth. He 
demonstrated this device by calculating Mandelbrot sets, 
performing parallel text searches and pipelined computa- 
tion of polynomials. With an 8031 internal clock speed of 
3 MHz, the 'cube' achieved 192 MIPS and between 4 and 
8 megaFLOPS. This is excellent performance, especially 
for such dinky little 8-bit controllers, ten years ago! And 
again, using today's mierocontrollers (like the Scenix 50 
MHz version of the Microchip Technology PIC 16C5x), 
you could build a big, fast Forth hypercube on a single 
Eurocard board. 

Heck, even I got into this act, and at that same ACM 
SIGForth Conference mentioned above [5]. I designed 
a multi-layer neural network system using New Micros' 
NMIS-0021 Forth-based Motorola 68HC11 single board 
computers [6]. I created an 'A-neuron' and a 'B-neuron' 
(which differed only in whether the Forth software used 
the 68HC1 l 's  analog or digital I/O) on each 2-inch by 
4-inch CPU board. Each board simulated 8 hybrid neu- 
rons, which were directly connected vertically and hori- 
zontally to other neurons in the various layers. The sim- 

plest 3-layer 8-neuron neural network consisted of two 
New Micros' boards, connected together to form a 4-inch 
square, one-half-inch tall. Networks containing more lay- 
ers and/or more neurons could be assembled using more 
boards, all controlled by the Forth language. Obviously, 
this is a different kind of parallelism than that mentioned 
above (artificial analog neural network vs. digital hyper- 
cube), but I think this example illustrates the principle 
okay. 

Next we're going to jump past 8-bit processor power, 
bursting into the realm of 16-bit to 32-bit node networks 
and well beyond. 

3 More Parallelism, More Forth 

In the early 1980's, now-gone INMOS created their 
first Transputer CPU, the T-212 [3]. It was a 16-bit 
stack/accumulator design with a RISC-like 'minimized' 
instruction set. What made the Transputer ideal for paral- 
lel processing networks was its built-in hardware support- 
ing fast CPU-to-CPU communications. Each Transputer 
chip had four high-speed serial data links with on-chip 
RAM buffers and DMA processing, so that interproces- 
sor communications would take place in a background 
mode, not requiring constant CPU supervision. 

INMOS developed the Transputer through 32-bit ver- 
sions (T-414 and T-800) and a 64-bit bus version (the T- 
9000). The T-800 had an internal 64-bit floating point 
ALU, somewhat reminiscent of the Intel 486. The T- 
9000 also added a 50 MHz clock, much faster process- 
ing speed, a 16 kbyte cache, more hardware communica- 
tions support and a 5-stage instruction pipeline. Instruc- 
tions were bytecoded (4-bits for commands and 4-bits for 
data or workspace offsets), so a single 64-bit memory ac- 
cess could pick up eight opcodes at a time which the CPU 
could execute in parallel. This particular Transputer was 
ideal for parallel systems known as 'systolic arrays'. The 
T-9000, combined with C104 crossbar switches, could 
be used in networks containing hundreds of thousands of 
processors. That would be a BIG network! 

The operating system INMOS supplied for the Trans- 
puter was called 'occam' [7], written by David May [8] 
and named after the English philosopher William of Oc- 
cam (1300-1349). Occam was designed to easily describe 
concurrent processes which communicate via one-way 
channels. The 'process' is the essential operation in oc- 
cam, with four subtypes: 'assignment', 'input', 'output' 
and 'wait'. These subtypes could be used to construct 
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more complex processes for sequential or parallel execu- 
tion, which could use inputs from other CPUs. Condi- 
tional execution was supported. A revised version, 'oc- 
cam2', added floating-point math and data typing [9]. 

Well, having such a powerful stack-oriented CPU at 
hand, how long do you think Forth enthusiasts and Forth 
language suppliers could resist writing a suitable Forth 
for the Transputer? Answer: not very long at all. One 
Transputer enthusiast [10] has listed a number of pro- 
gramming languages which have been implemented on 
Transputer networks; several Forths are included, some 
of which are mentioned below. 

The first is 'Inmos Transputer Forth', which is found in 
the parallel computing archive at the University of Kent 
in England [ 11 ]. The listings given cover Forths from the 
16-bit T-212 to the 32-bit T-800 Transputers. The nec- 
essary hardware is described, Forth images and a loader 
is provided, and instructions on rebuilding the Forths for 
other configurations are given. 

Next is a Forth-79 for the Transputer. Noel Henson 
[12], a former team leader at Cogent Research, designed 
a desktop computer using 32 INMOS T-414 and T-800 
processors. He reported in a posting to comp.lang.forth 
on May 4, 1998 that the only quick way to debug the 
hardware was to use Forth. Consequently he and his 
team wrote a Forth-79 for this hardware, which exe- 
cuted quickly on the Transputer and which could repli- 
cate itself from node to node. The program files archived 
in 'rom.zip' can be downloaded through links at Mr. 
Meenakshisundaram's website. 

Next is 'Turbo-Forth 83' for the 32-bit TS0x Trans- 
puters. The program files archived in 'f-tp-100.zip' can 
be downloaded through the above website links. Finally 
there is 'tForth Parallel Forth vl .0 '  by The Dutch Forth 

Workshop, accessible via the above website or directly 
[13]. This transputer Forth contains an integrated opti- 
mizer and an assembler; it runs about half as fast as hand- 
optimized assembler but much faster than Transputer C 
code. It is ANS-compliant. The I/O of tForth is handled 
with a server written in the C language and is currently 
available for MS-DOS and UNIX machines. 

The above Transputer Forths may be satisfactory for 
general use, but I have not had any personal experience 
with them. My sainted grandmother always used to say, 
"If you don't know diamonds, know your jeweler". To 
stretch a metaphor a bit, let me rephrase that wisdom: "If 
you don't know Forth, know your Forth source". One 
Forth vendor I know quite well who offers Transputer 
Forth is MicroProcessor Engineering Ltd of Southamp- 

ton, England. They sell a PC-based or Unix-based Forth 
cross-compiler for the T2xx, T4xx and T8xx CPUs [14]. 

The above list is undoubtedly incomplete. Be sure to 
check the relevant newsgroups [ 15-17], the Internet Paral- 
lel Computing Archive [ 11 ], the Oxford University Trans- 
puter Archive [18] and try keyword searches with your 
favorite search engines. By the way, the Transputer was 
picked up commercially from INMOS by STMicroelec- 
tronics (formerly SGS-Thomson) [19]. Please contact 
them for pricing and availability. 

Finally in this section, let me mention the use of Forth 
with the legendary Massively Parallel Processor (MPP) 
developed by Dr. John Dorband, NASA/Goddard Space 
Flight Center in the mid-1980's [20]. The MPP con- 
sisted of 16,000 individual single-instruction multiple- 
data (SIMD) processors, arranged in clusters. Each of 
these was fed by its own instruction stream. Communi- 
cation between clusters of processors was accomplished 
both explicitly and implicitly. The MPP was used for im- 
age enhancement from spacecraft and the Hubble Tele- 
scope, complex graphics operations, simulation of cellu- 
lar automata, finite element analysis and solution of other 
amazingly complex problems. It is unlikely that you or I 
will ever get our hands on such a vast parallel computer, 
but if I did I would use it to analyze DNA structure, pro- 
tein synthesis and enzyme binding site dynamics. What 
would you use it for? 

Dorband has worked on a number of other parallel 
computers. He has been a member of the ANS Forth 
Standards Committee, which proves that he knows a good 
thing when he sees it. 

4 Latest Parallel Forth Develop- 
ments 

Some of the preceeding information pertains to the use 
of Forth on ancient or unobtainable hardware. Now let's 
look at current events with Jeff Fox, a long-time Forth 
enthusiast, hardware/software designer and parallel com- 
puting wizard [21]. Jeff has worked with Forth creator 
Chuck Moore for a decade, including several Forth-in- 
silicon projects. 

Fox has looked long and hard at marrying Forth with 
LINDA, which is not a programming language but a 
way of extending conventional languages into the paral- 
lel processing arena (ie: FORTRAN-LINDA, C-LINDA, 
FORTH-LINDA) [22]. The LINDA paradigm is based 
on active and passive 'tuples'. A tuple is a sequence of 
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typed fields each of which have (or can have) a value. Tu- 
ples exist in 'tuple space', which is a global, associative, 
object memory. It can be implemented on multiproces- 
sor systems or computer networks. An active tuple sup- 
ports processes which are executing; passive tuples ex- 
change information (like 'Post-It '  notes). Active tuples 
can spawn simultaneous 'child' processes in other tuples 
as needed to perform calculations in parallel; passive tu- 
ples synchronize these processes and move data around. 

In FORTH-LINDA, the master processor manages the 
network, breaks up large problems into smaller parts and 
manages the active 'worker tuples' which perform the 
necessary calculations in parallel. When a worker tuple 
finishes its current task, it is recycled and reassigned to a 
new task. The number of available processors in the net- 
work is irrelevant: the more CPUs which are available to 
run active tuples, the faster the problem can be solved. 

The master processor loads a copy of Forth into each 
available processor. At the lowest level, these Forth 
processors execute Forth code pretty much in a nor- 
mal fashion, with the usual stack operations being local 
to the processor. At a higher level, LINDA extension 
words to Forth can be executed by these same proces- 
sors, reading or writing data and/or messages in passive 
tuples. FORTH-LINDA has inherent load balancing. The 
Montvetishsky paper describes all this in great detail and 
it is beautiful to read and understand. 

Obviously, any networked computer system which 
could run Forth could support FORTH-LINDA, from that 
little 8031-based hypercube, to the Transputers, to the 
MPP. But Jeff Fox has a cute little CPU for us which 
further enhances the beauty of this approach: a Forth en- 
gine known as the 'F21' [23]. The F21 is a stand-alone 
20-bit Forth processor which can be networked in rings, 
grids, multidimensional arrays or other network topolo- 
gies as needed to support various types of problems. As 
a stand-alone CPU it contains analog A/D-D/A, paral- 
lel ports, a realtime clock, a video coprocessor for gen- 
erating TV-type synchronized NTSC or RGB color dis- 
plays, a memory controller (SRAM/DRAM/ROM) and 
high-speed DMA-supervised serial I/O for networking. A 
CPU cycle is 20 nsec. 

Why is the F21 a 20-bit processor? Essentially, be- 
cause this is all it needs. Each of the CPU's 27 in- 
structions is 5-bits long, allowing four instructions to be 
fetched per memory cycle and executed simultaneously. 
A maximum sustained rate of 200 MIPS executing out of 
SRAM can be achieved in this fashion (ROM is faster, 
DRAM slower). Jeff Fox offers a free F21 software sim- 
ulator and emulator which you can download from his 

website. The F21 chip is now up to revision 'd' and is 
packaged in a 68-pin PLCC. Please contact Jeff at Ultra 
Technology for pricing and availability. 

Fox and Montvelishsky worked together on 'F*F', 
their Forth-distilled version of LINDA for the F21. The 
original FORTH-LINDA implementation required five 
Forth words to accomplish this; the new F*F requires 
only two, capitalizing on the built-in communications 
hardware support of the F21 when used in networks. 
The passive tuple model has been removed from LINDA, 
vastly simplifying data communications and message- 
passing between active processes. Any F21 can send data 
to a single node, groups of nodes or to the entire network; 
the Forth word 'G! '  stores data to these global data st~c- 
tures. Reading global variables or data structures work 
like local memory fetches and are quite fast. The Forth 
word 'RX' sets up a Forth word execution stream for 
transmission to and running on other nodes. This F*F 
software could be run on other hardware if you'd like to 
homebrew a few boards with your favorite CPU and some 
glue logic; however, the F21 seems to be the ideal setup 
for F'F,  especially since its instruction set is truly made 
for Forth. 

5 Conclusion 

This long-winded odyssey has gone backward and for- 
ward in time, looked at serial and parallel CPUs, singly 
and by the hundreds of thousands, and hardware and soft- 
ware considerations for parallel processing. The good 
news is: by now, your understanding of parallel process- 
ing and the role of Forth hardware and software in it is 
considerably greater. The bad news is: we have barely 
scratched the surface of this topic! I invite you to look 
more deeply if you have an interest in this area, or better 
still have a proposed application. Contact the people and 
resources I have outlined for you. Get involved! 

So there you have it: when you speak of parallel com- 
puting systems, don't  forget to think of Forth. 
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